skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miao, Junru"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Abstract Mitochondrial features and activities vary in a cell type- and developmental stage-dependent manner to critically impact cell function and lineage development. Particularly in male germ cells, mitochondria are uniquely clustered into intermitochondrial cement (IMC), an electron-dense granule in the cytoplasm to support proper spermatogenesis. But it remains puzzling how mitochondria assemble into such a stable structure as IMC without limiting membrane during development. Here, we showed that GASZ (germ cell-specific, ankyrin repeat, SAM and basic leucine zipper domain containing protein), a mitochondrion-localized germ cell-specific protein, self-interacted with each other to cluster mitochondria and maintain protein stability for IMC assembling. When the self-interaction of GASZ was disrupted by either deleting its critical interaction motif or using a blocking peptide, the IMC structure was destabilized, which in turn led to impaired spermatogenesis. Notably, the blocked spermatogenesis was reversible once GASZ self-interaction was recovered. Our findings thus reveal a critical mechanism by which mitochondrion-based granules are properly assembled to support germ cell development while providing an alternative strategy for developing nonhormonal male contraceptives by targeting IMC protein interactions. 
    more » « less
  3. The classic roles of mitochondria in energy production, metabolism, and apoptosis have been well defined. However, a growing body of evidence suggests that mitochondria are also active players in regulating stem cell fate decision and lineage commitment via signaling transduction, protein modification, and epigenetic modulations. This is particularly interesting for spermatogenesis, during which germ cells demonstrate changing metabolic requirements across various stages of development. It is increasingly recognized that proper male fertility depends on exquisitely controlled plasticity of mitochondrial features, activities, and functional states. The unique role of mitochondria in germ cell ncRNA processing further adds another layer of complexity to mitochondrial regulation during spermatogenesis. In this review, we will discuss potential regulatory mechanisms of how mitochondria swiftly reshape their features, activities, and functions to support critical germ cell fate transitions during spermatogenesis. In addition, we will also review recent findings of how mitochondrial regulators coordinate with germline proteins to participate in germ cell-specific activities. 
    more » « less